The Partitioning of Poleward Heat Transport between the Atmosphere and Ocean
نویسندگان
چکیده
Observations of the poleward heat transport of the earth (H ) suggest that the atmosphere is the primary transporting agent poleward of 30°, that oceanic (HO) and atmospheric (HA) contributions are comparable in the tropical belt, and that ocean transport dominates in the deep Tropics. To study the partition we express the ratio HA/HO as
منابع مشابه
Can global warming affect tropical ocean heat transport?
Tropical meridional ocean heat transport is studied in six coupled ocean-atmosphere models in which atmospheric CO 2 concentration has been increased. In the Indo-Pacific, the strength of Subtropical Cells (STCs) changes in response to changes in the trade winds. However, the change is not consistent among models. In contrast, in all models the tropical Indo-Pacific heat transport remains nearl...
متن کاملIncreased Ocean Heat Convergence Into the High Latitudes With CO<?xmltex 2?> Doubling Enhances Polar-Amplified Warming
We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2 doubling impact high-latitude climate. With CO2 doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere...
متن کاملThe Partitioning of the Poleward Energy Transport between the Tropical Ocean and Atmosphere
The mass transport in the shallow, wind-driven, overturning cells in the tropical oceans is constrained to be close to the mass transport in the atmospheric Hadley cell, assuming that zonally integrated wind stresses on land are relatively small. Therefore, the ratio of the poleward energy transport in low latitudes in the two media is determined by the ratio of the atmospheric gross static sta...
متن کاملThe importance of planetary rotation period for ocean heat transport.
The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the tot...
متن کاملTropical Pacific–Driven Decadel Energy Transport Variability
The atmospheric energy transport variability associated with decadal sea surface temperature variability in the tropical Pacific is studied using an atmospheric primitive equation model coupled to a slab mixed layer. The decadal variability is prescribed as an anomalous surface heat flux that represents the reduced ocean heat transport in the tropical Pacific when it is anomalously warm. The at...
متن کامل